from __future__ import annotations
from typing import TYPE_CHECKING
import numpy as np
import gamspy as gp
import gamspy.formulations.nn.utils as utils
from gamspy.exceptions import ValidationError
from gamspy.math import dim
if TYPE_CHECKING:
from gamspy import Parameter, Variable
[docs]
class Linear:
"""
Formulation generator for Linear layer in GAMS.
Parameters
----------
container : Container
Container that will contain the new variable and equations.
in_features : int
Input feature size
out_features : int
Output feature size
bias : bool = True
Should bias be added after linear transformation, by Default: True
name_prefix : str | None
Prefix for generated GAMSPy symbols, by default None which means
random prefix. Using the same name_prefix in different formulations causes name
conflicts. Do not use the same name_prefix again.
Examples
--------
>>> import gamspy as gp
>>> import numpy as np
>>> from gamspy.math import dim
>>> m = gp.Container()
>>> l1 = gp.formulations.Linear(m, 128, 64)
>>> w = np.random.rand(64, 128)
>>> b = np.random.rand(64)
>>> l1.load_weights(w, b)
>>> x = gp.Variable(m, "x", domain=dim([10, 128]))
>>> y, set_y = l1(x)
>>> [d.name for d in y.domain]
['DenseDim10_1', 'DenseDim64_1']
"""
def __init__(
self,
container: gp.Container,
in_features: int,
out_features: int,
bias: bool = True,
name_prefix: str | None = None,
):
if not isinstance(in_features, int) or in_features <= 0:
raise ValidationError("in_features must be a positive integer")
if not isinstance(out_features, int) or out_features <= 0:
raise ValidationError("out_features must be a positive integer")
if not isinstance(bias, bool):
raise ValidationError("bias must be a boolean")
self.container = container
self.in_features = in_features
self.out_features = out_features
self.use_bias = bias
self._state = 0
self.weight: Parameter | Variable | None = None
self.weight_array = None
self.bias: Parameter | Variable | None = None
self.bias_array = None
if name_prefix is None:
name_prefix = gp.utils._get_unique_name()
self._name_prefix = name_prefix
[docs]
def load_weights(
self, weight: np.ndarray, bias: np.ndarray | None = None
) -> None:
"""
Mark Linear as parameter and load weights from NumPy arrays.
After this is called `make_variable` cannot be called. Use this
when you already have the weights of your Linear layer.
Parameters
----------
weight : np.ndarray
Linear layer weights in shape (out_features x in_features)
bias : np.ndarray | None
Linear layer bias in shape (out_features, ), only required when
bias=True during initialization
"""
if self._state == 2:
raise ValidationError(
"load_weights cannot be used after calling make_variable"
)
if self.use_bias is False and bias is not None:
raise ValidationError(
"bias must be None since bias was set to False during initialization"
)
if self.use_bias is True and bias is None:
raise ValidationError("bias must be provided")
if len(weight.shape) != 2:
raise ValidationError(
f"expected 2D input for weight (got {len(weight.shape)}D input)"
)
expected_shape = (
self.out_features,
self.in_features,
)
if weight.shape != expected_shape:
raise ValidationError(
f"weight expected to be in shape {expected_shape}"
)
if bias is not None:
if len(bias.shape) != 1:
raise ValidationError(
f"expected 1D input for bias (got {len(bias.shape)}D input)"
)
if bias.shape[0] != self.out_features:
raise ValidationError(
f"bias expected to be in shape ({self.out_features},)"
)
if self.weight is None:
self.weight = gp.Parameter(
self.container,
name=utils._generate_name("p", self._name_prefix, "weight"),
domain=dim(expected_shape),
records=weight,
)
else:
self.weight.setRecords(weight)
self.weight_array = weight
if self.use_bias:
if self.bias is None:
self.bias = gp.Parameter(
self.container,
name=utils._generate_name("p", self._name_prefix, "bias"),
domain=dim([self.out_features]),
records=bias,
)
else:
self.bias.setRecords(bias)
self.bias_array = bias
self._state = 1
[docs]
def make_variable(self) -> None:
"""
Mark Linear layer as variable. After this is called `load_weights`
cannot be called. Use this when you need to learn the weights
of your linear layer in your optimization model.
This does not initialize the weights, it is highly recommended
that you set initial values to `weight` and `bias` variables.
"""
if self._state == 1:
raise ValidationError(
"make_variable cannot be used after calling load_weights"
)
expected_shape = (
self.out_features,
self.in_features,
)
if self.weight is None:
self.weight = gp.Variable(
self.container,
name=utils._generate_name("v", self._name_prefix, "weight"),
domain=dim(expected_shape),
)
if self.use_bias and self.bias is None:
self.bias = gp.Variable(
self.container,
name=utils._generate_name("v", self._name_prefix, "bias"),
domain=dim([self.out_features]),
)
self._state = 2
[docs]
def __call__(
self, input: gp.Parameter | gp.Variable, propagate_bounds: bool = True
) -> tuple[gp.Variable, list[gp.Equation]]:
"""
Forward pass your input, generate output and equations required for
calculating the linear transformation. If `propagate_bounds` is True,
the `input` is of type variable, and `load_weights` was called, then
the bounds of the input are propagated to the output.
Parameters
----------
input : gp.Parameter | gp.Variable
input to the linear layer, must be in shape
(* x in_features)
propagate_bounds : bool = True
If True, propagate bounds of the input to the output.
Otherwise, the output variable is unbounded.
"""
if not isinstance(propagate_bounds, bool):
raise ValidationError("propagate_bounds should be a boolean.")
if self.weight is None:
raise ValidationError(
"You must call load_weights or make_variable first before using the Linear"
)
if len(input.domain) == 0:
raise ValidationError(
"expected an input with at least 1 dimension"
)
if len(input.domain[-1]) != self.in_features:
raise ValidationError("in_features does not match")
expr = input @ self.weight.t()
if self.bias is not None:
expr = expr + self.bias[expr.domain[-1]]
out = gp.Variable(
self.container,
name=utils._generate_name("v", self._name_prefix, "output"),
domain=expr.domain,
)
set_out = gp.Equation(
self.container,
name=utils._generate_name("e", self._name_prefix, "set_output"),
domain=out.domain,
)
set_out[...] = out == expr
# If propagate_bounds is True, weight is a parameter and input is a variable,
# we will propagate the bounds of the input to the output
if (
propagate_bounds
and self._state == 1
and isinstance(input, gp.Variable)
):
x_bounds = gp.Parameter(
self.container,
name=utils._generate_name(
"p", self._name_prefix, "input_bounds"
),
domain=dim([2, *input.shape]),
)
x_bounds[("0",) + tuple(input.domain)] = input.lo[...]
x_bounds[("1",) + tuple(input.domain)] = input.up[...]
# If the bounds are all zeros (None in GAMSPy parameters);
# we skip matrix multiplication as it will result in zero values
if x_bounds.records is None:
out_bounds_array = np.zeros(out.shape)
if self.use_bias:
out_bounds_array = out_bounds_array + self.bias_array
out_bounds = gp.Parameter(
self.container,
name=utils._generate_name(
"p", self._name_prefix, "output_bounds"
),
domain=dim(out.shape),
records=out_bounds_array,
)
out.lo[...] = out_bounds
out.up[...] = out_bounds
return out, [set_out]
x_lb, x_ub = x_bounds.toDense()
# To deal with infinity values in the input bounds, we convert them into complex numbers
# where if the value is -inf, we convert it to 0 - 1j
# and if the value is inf, we convert it to 0 + 1j
x_lb = np.where(x_lb == -np.inf, 0 - 1j, x_lb)
x_ub = np.where(x_ub == np.inf, 0 + 1j, x_ub)
# get the positive and negative weights separately
w_pos = np.maximum(self.weight_array, 0)
w_neg = np.minimum(self.weight_array, 0)
lo_out = (x_lb @ w_pos.T) + (x_ub @ w_neg.T)
up_out = (x_ub @ w_pos.T) + (x_lb @ w_neg.T)
def _decode_complex_number(z: np.complex128) -> float:
"""
Decode complex number to real number.
5 + 0j -> 5
3 + 1j -> inf
7 - 3j -> -inf
"""
# If imaginary part is zero, return real part
if z.imag == 0:
return z.real
# If imaginary part is positive, return positive infinity
elif z.imag > 0:
return np.inf
# If imaginary part is negative, return negative infinity
else:
return -np.inf
lo_out = np.vectorize(_decode_complex_number)(lo_out)
up_out = np.vectorize(_decode_complex_number)(up_out)
if self.use_bias:
lo_out = lo_out + self.bias_array
up_out = up_out + self.bias_array
out_bounds_array = np.stack([lo_out, up_out], axis=0)
out_bounds = gp.Parameter(
self.container,
name=utils._generate_name(
"p", self._name_prefix, "output_bounds"
),
domain=dim([2, *out.shape]),
records=out_bounds_array,
)
out.lo[...] = out_bounds[("0",) + tuple(out.domain)]
out.up[...] = out_bounds[("1",) + tuple(out.domain)]
return out, [set_out]